DPP - 3 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93
Video Solution on YouTube:-
https://youtu.be/pjM0c6p6iW4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. Three point charges $q,-2 q$ and $-2 q$ are placed at the vertices of an equilateral triangle of side a. The work done by some external force to increase their separation to $2 a$ will be
(a) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q^{2}}{a}$
(b) negative
(c) zero
(d) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 q^{2}}{a}$

Q 2. Four equal charges of magnitude q each are placed at four corners of a square with its centre at origin and lying in y-z plane. A fifth charge $+Q$ is moved along x-axis. The electrostatic potential energy (U) of system varies on shifting $+Q$ on x-axis as:

(a)

(b)

(c)

(d)

Q 3. Two identical particles of charge q each are connected by a massless spring of force constant k. They are placed over a smooth horizontal surface. They are released when the separation between them is r and spring is unstretched. If maximum extension of the spring is r, the value of square root of k is: (neglect gravitational effect)

(a) $\frac{q}{4 r} \sqrt{\frac{1}{\pi \varepsilon_{0} \eta}}$
(b) $\frac{q}{2 r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
(c) $\frac{2 q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
(d) $\frac{q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$

Q 4. Two point positive charges q each are fixed at $(a, 0)$ and $(-a, 0)$. A third point positive charge Q is placed at origin. Electrostatic potential energy of the system will:
(a) increase if Q is slightly displaced along x-axis
(b) decrease if Q is slightly displaced along x-axis
(c) increase if Q is slightly displaced along y - axis
(d) decrease if Q is slightly displaced along y-axis

Q 5. In the electric field due to a point charge q, a test charge is carried from A to the points B, C, D and Elying on the same circle around q. The work done is

hysicsaholics

(a) the least along $A B$
(b) the least along $A D$
(c) zero along any of the paths $A B, A D, A C$ and $A E$
(d) the least along AE

Q 6. The diagram shows a small bead of mass m carrying charge q. The bead can freely move on the smooth fixed ring placed on a smooth horizontal plane. In the same plane a charge $+Q$ has also been fixed as shown. The potential energy of system when bead is at the point P is U. The velocity with which the bead should projected from the point P so that it can complete a circle should be greater than

(a) $\sqrt{\frac{6 U}{m}}$
(b) $\sqrt{\frac{\hat{\theta}}{m}}$
(c) $\sqrt{\frac{3 U}{m}}$
(d) None of these

Q 7. A particle of mass $1 \mathrm{~kg} \&$ charge $\frac{1}{3} \mu \mathrm{C}$ is projected towards a non-conducting fixed charge $\left(\frac{1}{3} \mu \mathrm{C}\right)$. Initially the point charge is far away from the sphere Impact parameter [Initial perpendicular distance of line of projection from Fixed charge] is 0.5 mm . Find the minimum initial velocity of projection required if minimum distance between two particles in subsequent motion is 1 mm ?

Fixed Point Charge

年
(a) $\sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$
(b) $2 \sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$
(c) $\frac{2}{3} \mathrm{~m} / \mathrm{s}$
(d) $4 \sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$

Q 8. Three Positive point charges $1 \mu \mathrm{C}, 2 \mu \mathrm{C}$ and $8 \mu \mathrm{C}$ are to be placed on a 9 cm long straight line. Minimum possible electrostatic potential energy of system is
(a) 1.6 J
(b) 2.6 J
(c) 3.4 J
(d) None of these

Q 9. A particle of mass m charge q is projected from large distance with velocity v towards another particle of mass m and charge $2 q$ along line joining them. Second particle was initially stationary. Velocity of second particle after long time will be
(a) $\mathrm{v} / 4$
(b) $\mathrm{v} / 2$
(c) $v / 3$
(d) v

Q 10. Two paricles are released from infinte separation. First particle has mass m charge $+q$ and second particle has mass $2 m$ and charge $-Q$. Due to electrostatic force they move towards each other. There relative velocity at separation x is
(a) $\sqrt{\frac{2 k Q q}{m x}}$
(b) $\sqrt{\frac{3 k Q q}{m x}}$
(c) $\sqrt{\frac{k Q q}{2 m x}}$
(d) $\sqrt{\frac{2 k Q q}{3 m x}}$

Answer Key

Q. 1	c	Q. 2	b	Q. 3	b	Q. 4	a,	d	Q. 5
(c								
Q. 6	a	Q. 7	b	Q. 8	c	Q. 9	d	Q. 10	b

