

DPP - 3	(Electrostatics)
---------	------------------

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/93	
Video Solution on YouTube:-	https://youtu.be/pjM0c6p6iW4	
Written Solution on Website:-	https://physicsabolics.com/pote/potesDetalis/39	

Q 1. Three point charges q, -2q and -2q are placed at the vertices of an equilateral triangle of side a. The work done by some external force to increase their separation to 2a will be (a) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{2q^2}{a}$ (b) negative (c) zero (d) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{3q^2}{a}$

Q 2. Four equal charges of magnitude q each are placed at four corners of a square with its centre at origin and lying in y-z plane. A fifth charge +Q is moved along x-axis. The electrostatic potential energy (U) of system varies on shifting +Q on x-axis as:

Q 3. Two identical particles of charge q each are connected by a massless spring of force constant k. They are placed over a smooth horizontal surface. They are released when the separation between them is r and spring is unstretched. If maximum extension of the spring is r, the value of square root of k is: (neglect gravitational effect)

Q 4. Two point positive charges q each are fixed at (a, 0) and (- a, 0). A third point positive charge Q is placed at origin. Electrostatic potential energy of the system will:

(a) increase if Q is slightly displaced along x-axis

- (b) decrease if Q is slightly displaced along x-axis
- (c) increase if Q is slightly displaced along y- axis
- (d) decrease if Q is slightly displaced along y-axis
- Q 5. In the electric field due to a point charge q, a test charge is carried from A to the points B, C, D and E lying on the same circle around q. The work done is

- (a) the least along AB(b) the least along AD
- (c) zero along any of the paths AB, AD, AC and AE
- (d) the least along AE
- Q 6. The diagram shows a small bead of mass m carrying charge q. The bead can freely move on the smooth fixed ring placed on a smooth horizontal plane. In the same plane a charge +Q has also been fixed as shown. The potential energy of system when bead is at the point P is U. The velocity with which the bead should projected from the point P so that it can complete a circle should be greater than

Q 7. A particle of mass 1 kg & charge $\frac{1}{3}\mu$ C is projected towards a non-conducting fixed charge $(\frac{1}{3}\mu$ C). Initially the point charge is far away from the sphere Impact parameter [Initial perpendicular distance of line of projection from Fixed charge] is 0.5 mm. Find the minimum initial velocity of projection required if minimum distance between two particles in subsequent motion is 1mm?

(a)
$$\sqrt{\frac{2}{3}}$$
 m/s (b) $2\sqrt{\frac{2}{3}}$ m/s (c) $\frac{2}{3}$ m/s (d) $4\sqrt{\frac{2}{3}}$ m/s

- Q 8. Three Positive point charges 1μC, 2μC and 8μC are to be placed on a 9 cm long straight line. Minimum possible electrostatic potential energy of system is
 (a) 1.6 J
 (b) 2.6 J
 - (c) 3.4J (d) None of these
- Q 9. A particle of mass m charge q is projected from large distance with velocity v towards another particle of mass m and charge 2q along line joining them. Second particle was initially stationary. Velocity of second particle after long time will be

 (a) v/4
 (b) v/2
 (c) v/3
 (d) v

Q 10. Two paricles are released from infinte separation . First particle has mass m charge +q and second particle has mass 2m and charge – Q. Due to electrostatic force they move towards each other. There relative velocity at separation x is

(a)	2kQq
(<i>a</i>) 1	mx
(c)	kQq
(C) 1	2 <i>mx</i>

(b) $\sqrt{\frac{3kQq}{mx}}$ (d) $\sqrt{\frac{2kQq}{3mx}}$

Answer Key

Q.1 c	Q.2 b	Q.3 b	Q.4 a, d	Q.5 c
Q.6 a	Q.7 b	Q.8 c	Q.9 d	Q.10 b